Candidate genes and adaptive radiation: insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae).
نویسندگان
چکیده
In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In the lake whitefish species complex (Coregonus clupeaformis), previous microarray experiments have led to the identification of candidate genes potentially implicated in the parallel evolution of the limnetic dwarf lake whitefish, which is highly distinct from the benthic normal lake whitefish in life history, morphology, metabolism, and behavior, and yet diverged from it only approximately 15,000 years before present. The aim of the present study was to address transcriptional divergence for six candidate genes among lake whitefish and European whitefish (Coregonus lavaretus) species pairs, as well as lake cisco (Coregonus artedi) and vendace (Coregonus albula). The main goal was to test the hypothesis that parallel phenotypic adaptation toward the use of the limnetic niche in coregonine fishes is accompanied by parallelism in candidate gene transcription as measured by quantitative real-time polymerase chain reaction. Results obtained for three candidate genes, whereby parallelism in expression was observed across all whitefish species pairs, provide strong support for the hypothesis that divergent natural selection plays an important role in the adaptive radiation of whitefish species. However, this parallelism in expression did not extend to cisco and vendace, thereby infirming transcriptional convergence between limnetic whitefish species and their limnetic congeners for these genes. As recently proposed (Lynch 2007a. The evolution of genetic networks by non-adaptive processes. Nat Rev Genet. 8:803-813), these results may suggest that convergent phenotypic evolution can result from nonadaptive shaping of genome architecture in independently evolved coregonine lineages.
منابع مشابه
The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae).
Species living in comparable habitats often display strikingly similar patterns of specialization, suggesting that natural selection can lead to predictable evolutionary changes. Elucidating the genomic basis underlying such adaptive phenotypic changes is a major goal in evolutionary biology. Increasing evidence indicates that natural selection would first modulate gene regulation during the pr...
متن کاملDifferences in Brain Transcriptomes of Closely Related Baikal Coregonid Species
The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids--Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)--that diverged from a common ancestor as recently as 10-20 thousand years ago. Using the Serial Analysis of Gene ...
متن کاملCrater lake cichlids individually specialize along the benthic–limnetic axis
A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. Thi...
متن کاملRegulatory versus coding signatures of natural selection in a candidate gene involved in the adaptive divergence of whitefish species pairs (Coregonus spp.)
While gene expression divergence is known to be involved in adaptive phenotypic divergence and speciation, the relative importance of regulatory and structural evolution of genes is poorly understood. A recent next-generation sequencing experiment allowed identifying candidate genes potentially involved in the ongoing speciation of sympatric dwarf and normal lake whitefish (Coregonus clupeaform...
متن کاملDNA barcoding of eight North American coregonine species.
Coregonine fishes have a circumpolar distribution in the Arctic and sub-Arctic Northern Hemisphere. This subfamily of Salmonidae consists of three genera: Prosopium, Stenodus and Coregonus, including over 30 species. Many species overlap spatially and are difficult to distinguish based on morphological characteristics, especially as larvae or juveniles. Here we present a method for rapid and co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 26 1 شماره
صفحات -
تاریخ انتشار 2009